- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Hu, Jianjun (2)
-
Siriwardane, Edirisuriya_M_D (2)
-
Song, Yuqi (2)
-
Al‐Fahdi, Mohammed (1)
-
Chen, Fanglin (1)
-
Dong, Rongzhi (1)
-
Fu, Nihang (1)
-
Hu, Ming (1)
-
Li, Qinyang (1)
-
Nasiri, Alireza (1)
-
Stefanov, Stanislav (1)
-
Wei, Lai (1)
-
Zhao, Yong (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Self‐supervised neural language models have recently achieved unprecedented success from natural language processing to learning the languages of biological sequences and organic molecules. These models have demonstrated superior performance in the generation, structure classification, and functional predictions for proteins and molecules with learned representations. However, most of the masking‐based pre‐trained language models are not designed for generative design, and their black‐box nature makes it difficult to interpret their design logic. Here a Blank‐filling Language Model for Materials (BLMM) Crystal Transformer is proposed, a neural network‐based probabilistic generative model for generative and tinkering design of inorganic materials. The model is built on the blank‐filling language model for text generation and has demonstrated unique advantages in learning the “materials grammars” together with high‐quality generation, interpretability, and data efficiency. It can generate chemically valid materials compositions with as high as 89.7% charge neutrality and 84.8% balanced electronegativity, which are more than four and eight times higher compared to a pseudo‐random sampling baseline. The probabilistic generation process of BLMM allows it to recommend materials tinkering operations based on learned materials chemistry, which makes it useful for materials doping. The model is applied to discover a set of new materials as validated using the Density Functional Theory (DFT) calculations. This work thus brings the unsupervised transformer language models based generative artificial intelligence to inorganic materials. A user‐friendly web app for tinkering materials design has been developed and can be accessed freely atwww.materialsatlas.org/blmtinker.more » « less
-
Zhao, Yong; Al‐Fahdi, Mohammed; Hu, Ming; Siriwardane, Edirisuriya_M_D; Song, Yuqi; Nasiri, Alireza; Hu, Jianjun (, Advanced Science)Abstract High‐throughput screening has become one of the major strategies for the discovery of novel functional materials. However, its effectiveness is severely limited by the lack of sufficient and diverse materials in current materials repositories such as the open quantum materials database (OQMD). Recent progress in deep learning have enabled generative strategies that learn implicit chemical rules for creating hypothetical materials with new compositions and structures. However, current materials generative models have difficulty in generating structurally diverse, chemically valid, and stable materials. Here we propose CubicGAN, a generative adversarial network (GAN) based deep neural network model for large scale generative design of novel cubic materials. When trained on 375 749 ternary materials from the OQMD database, the authors show that the model is able to not only rediscover most of the currently known cubic materials but also generate hypothetical materials of new structure prototypes. A total of 506 such materials have been verified by phonon dispersion calculation. Considering the importance of cubic materials in wide applications such as solar panels, the GAN model provides a promising approach to significantly expand existing materials repositories, enabling the discovery of new functional materials via screening. The new crystal structures discovered are freely accessible atwww.carolinamatdb.org.more » « less
An official website of the United States government
